

Welcome to Configly’s documentation!

Contents:

	Quickstart
	TL;DR

	Introduction

	The pitch

	Installing

	Interpolators

	API
	Config

	Contributing
	Prerequisites

	Getting Setup

	Need help

Indices and tables

	Index

	Module Index

	Search Page

Quickstart

[image: Github Actions]
 [https://github.com/schireson/configly/actions/workflows/build.yml/badge.svg][image: codecov]
 [https://codecov.io/gh/schireson/configly][image: Documentation Status]
 [https://configly.readthedocs.io/en/latest/?badge=latest]
TL;DR

config.yml
foo:
 bar: <% ENV[REQUIRED] %>
 baz: <% ENV[OPTIONAL, true] %>
list_of_stuff:
 - fun<% ENV[NICE, dament] %>al
 - fun<% ENV[AGH, er] %>al
 - more/<% ENV[THAN, er] %>/one/<% ENV[interpolation, er] %>!

app.py
from configly import Config

config = Config.from_yaml('config.yml')

print(config.foo.bar)
print(config.foo['baz'])
for item in config.list_of_stuff:
 print(item)

pip install configly[yaml]

Introduction

Loading configuration is done in every (application) project, and yet it is often
overlooked and condidered too easy or straightforward to bother using a library
to manage doing it.

Therefore, we often see code like this:

config.py
import os

Maybe it's following 12factor and loading all the config from the environment.
config = {
 'log_level': os.getenv('LOG_LEVEL'),
 'database': {
 # At least here, I can nest values if I want to organize things.
 'password': os.environ['DATABASE_PASSWORD'],
 'port': int(os.environ['DATABASE_PORT']),
 }
}

or this

config.py
import os

class Config:
 log_level = os.getenv('LOG_LEVEL')

 # Here it's not so easy to namespace
 database_password = os.environ['DATABASE_PASSWORD']
 database_port = int(os.environ['DATABASE_PORT'])

Oh goodness!
class DevConfig(Config):
 environment = 'dev'

or this

import configparser
...🤢... Okay I dont even want to get into this one.

And this is all assuming that everyone is loading configuration at the outermost entrypoint!
The two worst possible outcomes in configuration are:

	You are loading configuration lazily and/or deeply within your application, such that it
hits a critical failure after having seemingly successfully started up.

	There is not a singular location at which you can go to see all configuration your app might
possibly be reading from.

The pitch

Configly asserts configuration should:

	Be centralized

	One should be able to look at one file to see all (env vars, files, etc) which must exist for the
application to function.

	Be comprehensive

	One should not find configuration being loaded secretly elsewhere

	Be declarative/static

	code-execution (e.g. the class above) in the definition of the config inevitably makes it
hard to interpret, as the config becomes more complex.

	Be namespacable

	One should not have to prepend foo_ namespaces to all foo related config names

	Be loaded, once, at app startup

	(At least the definition of the configuration you’re loading)

	(Ideally) have structured output

	If something is an int, ideally it would be read as an int.

To that end, the configly.Config class exposes a series of classmethods from which your config
can be loaded. It’s largely unimportant what the input format is, but we started with formats
that deserialize into at least str, float, int, bool and None types.

from configly import Config

Currently supported input formats.
config = Config.from_yaml('config.yml')
config = Config.from_json('config.json')
config = Config.from_toml('config.toml')

Given an input config.yml file:

config.yml
foo:
 bar: <% ENV[REQUIRED] %>
 baz: <% ENV[OPTIONAL, true] %>
list_of_stuff:
 - fun<% ENV[NICE, dament] %>al
 - fun<% ENV[AGH, er] %>al
 - more/<% ENV[THAN, er] %>/one/<% ENV[interpolation, er] %>!

A number of things are exemplified in the example above:

	Each <% ... %> section indicates an interpolated value, the interpolation can
be a fragment of the overall value, and multiple values can be interpolated
within a single value.

	ENV is an “interpolator” which knows how to obtain environment variables

	[VAR] Will raise an error if that piece of config is not found, whereas
[VAR, true] will default VAR to the value after the comma

	Whatever the final value is, it’s interpreted as a literal value in the
format of the file which loads it. I.E. true -> python True, 1 ->
python 1, and null -> python None.

Now that you’ve loaded the above configuration:

app.py
from configly import Config

config = Config.from_yaml('config.yml')

You can access namespaced config using dot access
print(config.foo.bar)

You have use index syntax for dynamic, or non-attribute-safe key values.
print(config.foo['baz'])

You can iterate over lists
for item in config.list_of_stuff:
 print(item)

You can *generally* treat key-value maps as dicts
for key, value in config.foo.items():
 print(key, value)

You can *actually* turn key-value maps into dicts
dict(config.foo) == config.foo.to_dict()

Installing

Basic installation
pip install configly

To use the yaml config loader
pip install configly[yaml]

To use the toml config loader
pip install configly[toml]

To use the vault config loader
pip install configly[vault]

Interpolators

An “interpolator” is a class which knows how to get values from a particular
source by interpreting the internal portion of a dynamic config value
and replacing it with a value.

Default included interpolators include:

	ENV (environment variables)

	FILE (file data)

You can use all registered interpolators when loading the configuration

namespace:
 env: <% ENV[ENV, production] %>
 log_level: DEBUG
 ssl_cert: FILE[ssl_cert.crt]

 theoretical_http_loaded_value: <% HTTP[localhost:5000/variable, 3] %>

The point is that all pieces of individual configuration can be defined
centrally and declaratively, while interpolators actually go obtain that
config value associate with the given input.

Configly allows the dynamic addition of new interpolator through the use of
the register_interpolator() function.

API

Config

	
class configly.Config(value=None, _src_input=None, _loader=None, _registry=<configly.registry.Registry object>)

	Container for configuration.

>>> config = Config({"a": 1, "b": {"c": 2}})
>>> config.a
1
>>> config.b.c
2

	
classmethod from_json(file=None, content=None, registry=<configly.registry.Registry object>)

	Open a toml file and load it into the resulting config object.

	
classmethod from_toml(file=None, content=None, registry=<configly.registry.Registry object>)

	Open a toml file and load it into the resulting config object.

	
classmethod from_yaml(file=None, *, content=None, registry=<configly.registry.Registry object>)

	Open a yaml file and load it into the resulting config object.

	
refresh()

	Reevaluate the interpolation of variable values in the given sub-config.

This will be particularly useful for values which are coming from sources
where the value might change.

	
to_dict()

	Return a dict equivalent of the config object.

Roughly equivalent to
>>> dict(Config({1:1})) == Config({1:1}).to_dict()
True

	
class configly.Interpolator

	ABC to define the interface required by an interpolator.

It is not required to subclass Interpolator, but it does provide the interface
and ensures the class implements it.

	
abstract __getitem__(name)

	Override this method to implement a method to get the value for a piece of config.

This method should return a KeyError when the value cannot be found.

	
get(name, default=None)

	Implement get operation with a default.

Override this method to get more tailored behavior.

	
class configly.Registry

	A registry to allow for non-bundled interpolators and config loaders to be added.

By default Config uses a global registry, to which you can register_interpolator.

If you need more flexibility, you can pass registry to any of the from_* classmethods
to use your own registry.

>>> from configly import Config
>>> local_registry = Registry()
>>> config = Config.from_yaml('readthedocs.yml', registry=local_registry)

	
register_interpolator(name, interpolator_cls, overwrite=False)

	Register a new interpolator for loading configuration from different sources.

By default Config classes read from a global registry of interpolators. This function
registers new interpolators to that global registry.

For example, internally configly registers environment interpolation through a call like:

>>> from configly import EnvVarInterpolator
>>> register_interpolator("ENV", EnvVarInterpolator, overwrite=True)

	
configly.register_interpolator(name, interpolator_cls, overwrite=False)

	Register a new interpolator for loading configuration from different sources.

By default Config classes read from a global registry of interpolators. This function
registers new interpolators to that global registry.

For example, internally configly registers environment interpolation through a call like:

>>> from configly import EnvVarInterpolator
>>> register_interpolator("ENV", EnvVarInterpolator, overwrite=True)

Contributing

Prerequisites

If you are not already familiar with Poetry [https://poetry.eustace.io/], this is a poetry project, so you’ll need this!

Getting Setup

See the Makefile for common commands, but for some basic setup:

Installs the package with all the extras
make install

And you’ll want to make sure you can run the tests and linters successfully:

Runs CI-level tests, with coverage reports
make test lint

Need help

Submit an issue!

 Python Module Index

 c

 		 	

 		
 c	

 	
 	
 configly	

Index

 _
 | C
 | F
 | G
 | I
 | M
 | R
 | T

_

 	
 	__getitem__() (configly.Interpolator method)

C

 	
 	Config (class in configly)

 	
 	
 configly

 	module

F

 	
 	from_json() (configly.Config class method)

 	
 	from_toml() (configly.Config class method)

 	from_yaml() (configly.Config class method)

G

 	
 	get() (configly.Interpolator method)

I

 	
 	Interpolator (class in configly)

M

 	
 	
 module

 	configly

R

 	
 	refresh() (configly.Config method)

 	register_interpolator() (configly.Registry method)

 	(in module configly)

 	
 	Registry (class in configly)

T

 	
 	to_dict() (configly.Config method)

 nav.xhtml

 Table of Contents

 		
 Welcome to Configly’s documentation!

 		
 Quickstart

 		
 TL;DR

 		
 Introduction

 		
 The pitch

 		
 Installing

 		
 Interpolators

 		
 API

 		
 Config

 		
 Contributing

 		
 Prerequisites

 		
 Getting Setup

 		
 Need help

_static/file.png

_static/minus.png

_static/plus.png

